Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

نویسندگان

  • Sandip A. Ghuge
  • Alessandra Tisi
  • Andrea Carucci
  • Renato A. Rodrigues-Pousada
  • Stefano Franchi
  • Paraskevi Tavladoraki
  • Riccardo Angelini
  • Alessandra Cona
چکیده

Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H₂O₂) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H₂O₂ biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H₂O₂ derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of salt Stress on Root Anatomy and Hydraulic Conductivity of Barley Cultivars

A hydroponic experiment was carried out to compare root anatomy and hydraulic conductivity of four barley cultivars including Valfajr, Karoon, Afzal and Zarjo under salt stress conditions. The results showed that under salt stress, the minimum diameter of vessels was observed in the peripheral metaxylem of seminal roots of Valfajr cultivar and in adventitious roots; Karoon with 19±3 µm had maxi...

متن کامل

Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development

Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeost...

متن کامل

Tissue-Specific Expression of Cell Wall Proteins in Developing Soybean Tissues.

Cell wall hydroxyproline-rich glycoproteins (HRGPs) and glycine-rich proteins (GRPs) were examined at the protein and at the mRNA levels in developing soybean tissues by tissue print immunoblots and RNA blots. In young soybean stems, HRGPs are expressed most heavily in cambium cells, in a few layers of cortex cells surrounding primary phloem, and in some parenchyma cells around the primary xyle...

متن کامل

Competitive inhibition of copper amine oxidases by vitamin B hydrochloride in chickpea

Copper amine oxidases (CAOs) catalyse the oxidative de-amination of biogenic amines which are ubiquitous compounds essential for cell growth and proliferation. The enzymes are homodimers containing both topaquinone and a Cu(II) ions as cofactors at the active site of each subunit. After extraction and purification of chickpea (cicer arietinum) amine oxidase by chromatoghraphy, Km and Vmax of th...

متن کامل

Effect of copper toxicity on root morphology, ultrastructure, and copper accumulation in Moso bamboo (Phyllostachys pubescens).

A hydroponic culture experiment was conducted to study the effect of copper toxicity on root morphology, ultrastructure, and copper accumulation in Moso bamboo (Phyllostachys pubescens). Root ultrastructure of Moso bamboo was studied by transmission electron microscopy and scanning electron microscopy. Application of 200 μM Cu resulted in an accumulation of 810 mg kg(-1) dry weight and 91 mg kg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015